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Abstract. Progress in 3D computer vision tasks demands a huge amount
of data, yet annotating multi-view images with 3D-consistent annota-
tions, or point clouds with part segmentation is both time-consuming
and challenging. This paper introduces DatasetNeRF, a novel approach
capable of generating infinite, high-quality 3D-consistent 2D annota-
tions alongside 3D point cloud segmentations, while utilizing minimal 2D
human-labeled annotations. Specifically, we leverage the semantic prior
within a 3D generative model to train a semantic decoder, requiring only
a handful of fine-grained labeled samples. Once trained, the decoder gen-
eralizes across the latent space, enabling the generation of infinite data.
The generated data is applicable across various computer vision tasks,
including video segmentation and 3D point cloud segmentation in both
synthetic and real-world scenarios. Our approach not only surpasses base-
line models in segmentation quality, achieving superior 3D-Consistency
and segmentation precision on individual images, but also demonstrates
versatility by being applicable to both articulated and non-articulated
generative models. Furthermore, we explore applications stemming from
our approach, such as 3D-aware semantic editing and 3D inversion. Code
can be found at �/GenIntel/DatasetNeRF.

Keywords: Efficient Synthetic Dataset Generation · 3D-Aware Gener-
ative Model · Neural Rendering

1 Introduction

In recent years, research on Large-Scale Models or Foundation Models has be-
come a prevailing trend. Training these kinds of models demands vast amounts
of 2D or 3D labeled data, which entails significant human effort. Based on this
limitation, a critical question emerges: How do we efficiently generate a substan-
tial volume of high-quality data-annotation pairs while minimizing human labor?
Our paper introduces a method to generate an unlimited supply of high-quality,
3D-aware data by utilizing only a limited set of human-provided 2D annotations.

To efficiently scale datasets, recent approaches [3,34,68,76] utilize rich seman-
tic features from 2D generative models as image representations for downstream
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(1) Manually labeled 3D-consistent 
fine-grained annotations of 
generated images

(3) Generation of 3D point cloud 
part segmentations back-projected 
from 2D annotations

(2) Genera?on of 3D-consistent fine-
grained annota?ons from our 
method

View Consistent

View & Pose Consistent

Fig. 1: DatasetNeRF Pipeline Overview: (1) The manual creation of a small set of
multi-view consistent annotations, followed by the training of a semantic segmentation
branch using a pretrained 3D GAN backbone. (2) Leveraging the latent space’s gener-
alizability to produce an infinite array of 3D-consistent, fine-grained annotations. (3)
Employing a depth prior from the 3D GAN backbone to back-project 2D segmenta-
tions to 3D point cloud segmentations.

tasks, such as semantic segmentation. The remarkable representational capacity
of generative models facilitates training segmentation models with only a mini-
mal dataset. During inference, a randomly sampled latent code from the genera-
tor is capable of producing a corresponding high-quality annotation. This mech-
anism effectively transforms the generator into an inexhaustible source of data,
enabling the creation of extensive datasets with significantly reduced labeling
requirements. However, existing methods predominantly focus on 2D generation
models, limiting their capability for 3D-aware tasks. Nevertheless, the emergence
of geometry-aware 3D Generative Adversarial Networks (GANs) [8,9,51], which
decouple latent code and camera pose, offers promising avenues.

In this paper, we introduce DatasetNeRF, an efficient 3D-aware data fac-
tory based on generative radiance fields. Our 3D-aware Data Factory is adept at
creating extensive datasets, delivering high-quality, 3D-consistent, fine-grained
semantic segmentation, and 3D point cloud part segmentation as shown in Fig-
ure Fig. 1. This is accomplished by training a semantic branch on a pre-trained
3D GAN, such as EG3D [8], leveraging the semantic features in the generator’s
backbone to enhance the feature tri-plane for semantic volumetric rendering. To
improve the 3D consistency of our segmentations, we incorporate a density prior
from the pre-trained EG3D model into the semantic volumetric rendering pro-
cess. We further exploit the depth prior from the pre-trained model, efficiently
back-projecting the semantic output to obtain 3D point cloud part segmen-
tation. Our approach facilitates easy manipulation of viewpoints, allowing us
to render semantically consistent masks across multiple views. By merging the
back-projected point cloud part segmentations from different perspectives, we
can achieve comprehensive point cloud part segmentation of the entire 3D rep-
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resentation. Remarkably, our process for generating this vast array of 3D-aware
data requires only a limited set of 2D data for training.

We evaluate our approach on the AFHQ-cat [13], FFHQ [27], AIST++
dataset [35] and Nersemble dataset [32]. We generate detailed annotations for
these datasets, showing our method outperforms existing baselines by enhancing
3D consistency across video sequences and improving segmentation accuracy for
single images. Additionally, we demonstrate that our method is also seamlessly
compatible with articulated generative radiance fields [6] on AIST++ dataset.

In addition, we qualitatively demonstrate that models trained with our gener-
ated dataset can generalize well to real-world scans, such as those in the Nersem-
ble dataset [32]. We also augment the point cloud semantic part segmentation
benchmark dataset [72] using our method, with a specific focus on the ShapeNet-
Car dataset [10]. Our work further analyzes potential applications like 3D-aware
semantic editing and 3D inversion, demonstrating that the ability to generate
infinite 3D-aware data from a limited number of 2D labeled annotations paves
the way for numerous 2D and 3D downstream applications.

2 Related Work

2.1 Neural Representations and Rendering

In recent years, the emergent implicit neural representation offers efficient, memory-
conscious, and continuous 3D-aware representations for objects [2,21,43,53] and
scenes [42, 44, 45, 61, 62, 64, 80] in arbitrary resolution. By combining implicit
neural representation with volume render, NeRF [44] and its descendants [19,
24,30,36,37,39–41,46,63,66,70,75] have yielded promising results for both 3D re-
construction and novel view synthesis applications. Along with image synthesis,
the implicit representations are also used to predict semantic maps [33, 67, 77].
For example, Semantic-NeRF [77] augments the original NeRF by appending
a segmentation renderer. NeSF [67] learns a semantic-feature grid for semantic
maps generation. However, querying properties for each sampled point leads to
a low training and inference speed. Considering the pros and cons of explicit
representations and implicit representations, recent works [4,5,11,14,45,73] pro-
pose hybrid representations to complement each other. In this work, we also use
hybrid tri-plane representations for 3D modeling.

2.2 3D Generative Models

The Generative Adversarial Networks (GANs) [20] have demonstrated remark-
able capabilities in generating photorealistic 2D images [17, 26, 28, 29, 74]. With
this success, some works extended this setting to 3D domain. For instance,
PrGANs [18] and VON [79] first learn to generate a voxelized 3D shape and
then project it to 2D. BlockGAN [48] learns 3D features but separates one scene
into different objects. However, these approaches encounter challenges in achiev-
ing photorealistic details due to the limited grid resolutions.
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Recent works [8, 9, 14, 22, 49, 52, 59, 65] integrated neural implicit representa-
tion into GANs to enable 3D-aware image synthesis with multi-view consistency.
Specifically, GRAF [59] combines NeRF for scene representation with an adver-
sarial framework to enable the training on unposed images; pi-GAN [9] operates
in a similar setting but makes some differences in network architecture and train-
ing strategy; EG3D [8] learns tri-plane hybrid 3D representation and interprets
the aggregated features via volume rendering, ensuring expressive semantic fea-
ture extraction and high-resolution geometry-aware image synthesis. While the
learned features in generative models are aggregated to generate 3D-aware im-
ages, there is still space to harness them for other proposes.

2.3 Synthetic Dataset Generation

Traditional dataset synthesis [16,54,57,58] relies on computer simulations for ren-
dering images along with their corresponding labels, which can save annotation
cost. However, models trained on such datasets often face challenges in general-
izing to real-world datasets due to domain gaps. Unlike traditional methods of
dataset synthesis, the use of generative models for dataset synthesis is favored
due to their ability to produce a large number of high-quality and diverse images
with similar distribution of natural data [71]. The family of generative models is
extensive, with GANs [20], diffusion models [25], and NeRF [44] having achieved
notable success in image synthesis. Specifically, many works leverage the rich
semantic information learned by GANs to manipulate images [1, 38, 60]. Diffu-
sion models benefit from a stationary training objective and demonstrate decent
scalability, enabling the generation of high-quality images [15]. NeRF, as a recent
and emerging generative model, has received widespread acclaim for maintain-
ing multi-view consistency. Additionally, the capability of generative models to
learn rich semantic information allows such methods to learn to generate new
data and labels using only a few manually annotated images [34, 47, 68, 76]. For
instance, DatasetGAN [76] leverages StyleGAN [28] as an image generator and
synthesize accurate semantic labels with a few human labeled data. Neverthe-
less, these previous efforts focused on generating semantic maps for 2D datasets.

3 Method

We introduce DatasetNeRF, a framework designed to generate an extensive range
of 3D-aware data. It efficiently produces fine-grained, multi-view consistent anno-
tations and detailed 3D point cloud part segmentations from a limited collection
of human-annotated 2D training images.

To address the challenge of generating a varied 3D-aware dataset, we employ
a 3D GAN generator as the foundational architecture of our framework. We
augment this 3D GAN with a semantic segmentation branch, enabling the pro-
duction of precise annotations across diverse 3D viewpoints as well as detailed 3D
point cloud part segmentations. Fig. 2 provides a comprehensive visualization of
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Fig. 2: Overall Architecture of DatasetNeRF. The DatasetNeRF architecture unifies a
pretrained EG3D model with a semantic segmentation branch, comprising an enhanced
semantic tri-plane, a semantic feature decoder, and a semantic super-resolution module.
The semantic feature tri-plane is constructed by reshaping the concatenated outputs
from all synthesis blocks of the EG3D generator. The semantic feature decoder inter-
prets aggregated features from semantic tri-plane into a 32-channel semantic feature
for every point. The semantic feature map is rendered by semantic volumetric ren-
dering. We incorporate a density prior from the pretrained RGB decoder during the
rendering process to enhance 3D consistency. The semantic super-resolution module
upscales and refines the rendered semantic feature map into the final semantic output.
The combination of the semantic mask output and the upsampled depth map from the
pretrained EG3D model enables an efficient process for back-projecting the semantic
mask, thereby facilitating the generation of point cloud part segmentation.

the entire model architecture. For a more in-depth understanding of the different
components of our framework, we delineate the specific backbones used for vari-
ous tasks in Sec. 3.1. Subsequently, in Sec. 3.2, we elaborate on the methodology
employed to train the semantic segmentation branch. In Sec. 3.3, we provide a
detailed presentation of both the generation process and the resulting 3D-aware
data within the DatasetNeRF framework.

3.1 3D GAN Generator Backbone

We take EG3D [8] as our backbone model, which introduces a tri-plane architec-
ture for efficient neural rendering at reduced resolutions. This tri-plane consists
of reshaped feature representations derived from the output of the generator.
To enhance the representational power of the triplane in our work, we take
all feature maps {S0, S1, . . . , Sk} from the the output of consecutive synthesis
block of the pretrained generator. These features are upsampled to match the
highest output resolution, and subsequently concatenated into a feature tensor
with dimensions [N,N,C]. Following this, we reshape the concatenated feature
tensor into an augmented tri-plane format, similar to that of EG3D [8], to fa-
cilitate our semantic neural rendering pipeline. This tri-plane format, distinct
from other work [8], represents a key innovation in our work. Its significance
and impact are further validated through an ablation study detailed later in the
text. Our enhanced tri-plane serves as the semantic feature volume for rendering
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Fig. 3: The illustration of multi-view point cloud fusion.

semantically-rich features within our semantic segmentation branch, enabling
accurate depiction of complex structures in images.

Notably, our methodology also exhibits compatibility with a range of 3D
GAN architectures, whether articulated or inarticulated. This adaptability un-
derscores the robustness of our approach in generating 3D-consistent segmenta-
tion. It facilitates not only multi-view consistency but also pose-consistency in
segmentations, further proving the utility of our approach across diverse tasks.

3.2 Semantic Segmentation Branch Training

We query any 3D position x within our semantic tri-plane with enhanced format
by projecting it onto each of the three feature planes, obtaining the respective
feature vectors (Fxy, Fxz, Fyz) through bi-linear interpolation. These vectors are
then aggregated via summation. This aggregated feature serves as the input to
the subsequent semantic decoder, which outputs a 32-channel semantic feature.
To harness the 3D consistency inherent in the pretrained EG3D model, we re-use
the same density σ as the pretrained RGB decoder at the equivalent tri-plane
point. For a majority of our experiments, the semantic feature map is rendered
at a resolution of 1282. Through semantic volumetric rendering, we derive a raw
semantic map Îs ∈ R128×128×C and a semantic feature map Îϕ ∈ R128×128×32.
Subsequently, a semantic super-resolution module Us is utilized to refine the
semantic map into a high-resolution segmentation Î+s ∈ R512×512×C :

Î+s = Us(Îs, Îϕ). (1)

For a given ground-truth viewpoint P and corresponding latent code z, we com-
pare the ground-truth semantic mask Is with our model’s output semantic mask
using cross-entropy loss, mathematically represented as:

LCE(Is, Î
+
s ) = −

C∑
c=1

Is,c log(Î
+
s,c), (2)
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where Is,c is the binary indicator of the ground-truth class label for class c and
Î+s,c is the predicted probability of class c for each pixel in the final output.

3.3 DatasetNeRF as 3D-Aware Data Factory

DatasetNeRF as Multi-view Consistent Segmentations Factory. Em-
powered by the geometric priors derived from 3D GAN, our DatasetNeRF nat-
urally specializes in generating segmentations that maintain consistency across
multiple viewpoints. Once trained, the model adeptly produces high-quality se-
mantic segmentations from a randomly sampled latent code paired with any
given pose. The generated multi-view consistent images are illustrated in Fig. 4.
The easy generation of fine-grained, multi-view consistent annotations markedly
diminishes the need for human effort.
DatasetNeRF as 3D Point Cloud Segmentation Factory. Initially, we
render a depth map using the pretrained RGB branch. The depth maps are
generated via volumetric ray marching. This method computes depth by aggre-
gating weighted averages of individual depths along each ray. The depth map
is upsampled to align with the dimensions of the semantic mask, allowing the
semantic mask to be back-projected into 3D space. The final point cloud of the
object is formed by merging back-projected semantic maps from various view-
points, shown in Fig. 3. The efficient acquisition of fine-grained 3D point cloud
segmentation significantly reduces the amount of human effort required. The
visualization of point cloud part segmentation is illustrated in Fig. 1 (3).
Extension to Articulated Generative Radiance Field. We showcase how
our method can also be applied to articulated generative radiance field. Instead of
using EG3D, we adopt the generator of GNARF [5] as our backbone. GNARF [5]
introduces an efficient neural representation for articulated objects, including
bodies and heads, that combines the tri-plane representation with an explicit
feature deformation guided by a template shape. The semantic branch is trained
on top of the deformation-aware feature tri-plane. The training set contains 150
annotations from 30 different human samples and 60 different training poses. As
shown in Fig. 4, the result can be well generalized on novel human poses.

4 A Small Dataset with Human Annotations

Our method necessitates a small dataset with annotation. To this end, we em-
ploy our backbone model to synthesize a small number of images, followed by a
professional annotator for fine-grained annotation. Our fine-grained annotation
protocol was applied to AFHQ-Cat [13], FFHQ [27], and AIST++ [35], with a
simplified scheme utilized for ShapeNet-Car [10].
Annotation Details For the training set, we crafted 90 fine-grained annota-
tions for each of the AFHQ-Cat [13] and FFHQ [27] datasets. These encompass
30 distinct subjects with three different views for each subject. The angular dis-
position for both training and testing spans from −π

6 to π
6 relative to the frontal

view, holding all other degrees of freedom constant. Consequently, each subject is
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depicted in a frontal stance, accompanied by both leftward and rightward poses.
The AIST++ dataset [35] posed a greater challenge due to the diversity of human
poses, prompting us to generate 150 annotations for 60 disparate poses across
various human subjects. For the ShapeNet-Car dataset, our efforts yielded 90
annotations from 30 distinct samples, each from a unique viewpoint. The annota-
tions for ShapeNet-Car, identifying parts like hood, roof, wheels, other, align with
the standard labels used in the point cloud part segmentation benchmark [72].
The manually created dataset is visualized in Fig. 1(1).

Fig. 4: Examples of synthesized image-annotation pairs from 3D-aware data factoty.

5 Experiments

We conduct extensive experiments with our approach. First, we assess the 2D
part segmentation performance across two distinct object categories: cat and
human faces. Furthermore, we demonstrate the efficacy of our method in gener-
ating 3D point cloud part segmentations for both cat faces and ShapeNet-Cars.
Finally, we show a variety of 3D applications based on GAN inversion [78].
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Table 1: Comparison of different approaches on AFHQ-Cat and FFHQ datasets. In
the table, “Ind.” refers to 90 unique individual image annotations representing arbitrary
poses within the training range, and “Vid.” denotes a video annotation comprising 61
frames.

Methods AFHQ-Cat Ind. AFHQ-Cat Vid. FFHQ Ind. FFHQ Vid.

mIoU Acc. mIoU Acc. mIoU Acc. mIoU Acc.

Transfer Learning 0.2995 0.6358 0.2605 0.5766 0.4083 0.7964 0.3895 0.8611
DatasetGAN 0.5381 0.8464 0.5971 0.8625 0.6317 0.8881 0.6390 0.9259
DatasetNeRF 0.6057 0.8798 0.6756 0.9253 0.6200 0.8996 0.6561 0.9278

5.1 2D Part Segmentation

2D Part Segmentation Network. Consistent with the approach used in
DatasetGAN [76], we employ Deeplab-V3 [12] with ResNet101 [23] backbone
as our 2D part segmentation network.
Experimental Setup. Our baselines include transfer learning and Dataset-
GAN [76]. For the transfer learning approach, we fine-tune the last layer of
a pre-trained (on ImageNet) network with our human-annotated data. For the
DatasetGAN baseline, we retrain a DatasetGAN model with the annotated data
to generate a dataset comprised of 10K image-annotation pairs, which serves
as the training set for the Deeplab-V3 segmentation network. We adjust the
size of the concatenated feature to match that of the DatasetNeRF’s feature
size, ensuring a fair comparison. For our DatasetNeRF, we generate 10K im-
ages with uniformly distributed angles which cover both frontal and horizontal
views. The Deeplab-V3 segmentation network is then trained from scratch using
this dataset. Each test dataset contains 90 unique individual image annotations
for arbitrary poses within the training spectrum, as well as a sequential video
annotation comprising 61 frames.
Quantitative Evaluation. Tab. 1 presents the segmentation results for the
AFHQ-Cat and FFHQ datasets. DatasetNeRF outperforms the baseline mod-
els in terms of segmentation quality in the video test set on both AFHQ-Cat
and FFHQ datasets. This enhancement underscores the informativeness of the
data generated by our approach, which is attributed to the 3D consistency prior
inherent from the pretrained generator backbone. Specifically, in the individual
test set, DatasetNeRF achieves superior segmentation results for the AFHQ-Cat
dataset and demonstrates comparable performance for the FFHQ dataset.
Qualitative Evaluation for 3D-Consistency. We show spatiotemporal line
textures [7] of semantic masks from different poses in Fig. S10 in the supple-
mentary material. The smoothness of these semantic textures, matching the
corresponding RGB textures, demonstrates the 3D-consistency of our gener-
ated data. While modeling 3D-consistency in RGB space is challenging due to
high-frequency details with 2D CNN upsampling module [69], semantic mask
generation is comparably easier and performs well.
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Table 2: Training results with different numbers of generated point cloud training
samples on AFHQ-Cat dataset.

Experiments Accuracy mIoU

400 (Generated) 0.8788 0.6268
600 (Generated) 0.8809 0.6447
800 (Generated) 0.8828 0.6403
1100 (Generated) 0.8950 0.6651

Table 3: Evaluation of the generated point cloud on ShapeNet-Car dataset with Point-
Net as the backbone model.

Experiments Accuracy mIoU

600 (ShapeNet) 0.8796 0.6773
600 (ShapeNet) + 725 (Generated) 0.9073 0.7519

1325 (ShapeNet) 0.9059 0.7412
1325 (ShapeNet) + 1325 (Generated) 0.9104 0.7571

5.2 3D Point Cloud Part Segmentation

We demonstrate the effectiveness of our generated point cloud part segmentation
dataset by training PointNet [55] on the generated data. We assess the perfor-
mance on AFHQ-Cat faces and Shape-Net Car based on mean Intersection-over-
Union (mIoU) and accuracy metrics. We show that our approach not only enables
the generation of high-quality new point cloud part segmentations dataset from
self-annotated 2D images but also acts as a valuable augmentation to existing
classical 3D point cloud part segmentation benchmark datasets.
AFHQ-Cat Face Point Cloud Segmentation. From 1200 generated sam-
ples, we create a fixed test set of 100 point clouds and train PointNet with varying
numbers of training samples. Tab. 2 illustrates that increased training samples
enhance model performance on the test set, which shows the effectiveness of our
self-generated point cloud part segmentation dataset.
Augmentation of ShapeNet-Car. Our method’s efficacy, detailed in Tab. 3,
shows its potential as both a substitute and an augmentation for the original
ShapeNet-Car dataset in different experimental setups. The original benchmark
dataset consists of 1,825 ShapeNet-Car point cloud part segmentations. Out of
these, 500 point clouds are designated as the test set, and the remaining 1,325
serve as the training set.
Real-world Human Face Point Cloud Segmentation. We further demon-
strate qualitatively that models trained on point clouds generated by our method
exhibit effective generalization capabilities when applied to real-world datasets.
We trained a PointNet segmentation model on a dataset comprising 1,200 point
clouds, synthesized by our proposed method. For evaluation purposes, we em-
ployed the Nersemble dataset [32], extracting point clouds from 2D multi-view
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images as our test dataset. We show segmentation results for one sample in Fig. 5,
showcasing the model’s ability to achieve plausible segmentation on real-world
human face, particularly in critical regions such as the neck, nose bridge, eyes,
cheek, and forehead. Nonetheless, the model encounters challenges in correctly
classifying certain areas, notably the ears, which are misidentified due to the
model’s limitations in distinguishing them from facial regions.

Fig. 5: Visualization of real-world human face point cloud segmentations.

Table 4: Ablation study comparing the impact of different settings on the dataset,
focusing on mIoU and accuracy metrics.

Settings mIoU Accuracy

w/o Multiscale Feature 0.4014 0.7067
w/ Multiscale Feature 0.4796 0.7884
w/o Density Prior 0.4728 0.7813
w/ Density Prior 0.4796 0.7884
w/o Density Prior (Video) 0.6899 0.9188
w/ Density Prior (Video) 0.6913 0.9268

5.3 Ablation Study

In this section, we evaluate various aspects of our methodology. We ablate the
experiments on AFHQ-Cat dataset. The testset is same as the testset used in
Sec. 5.1. We employ GAN inversion [78] to initially optimize the latent code and
pose of an input RGB test image, subsequently generating its corresponding se-
mantic segmentation. We begin by examining the impact of the tri-plane archi-
tecture’s size, as shown in Tab. 4. Enhancing the original tri-plane architecture
from EG3D with multiscale features extracted from the generator’s backbone
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Table 5: Ablation study on the effect of training sample size on mIoU and accuracy
metrics for individual images and video sequences.

Training Samples AFHQ-Cat Individual AFHQ-Cat Video

mIoU Acc. mIoU Acc.

30 images 0.4394 0.7716 0.6138 0.8892
45 images 0.4588 0.7778 0.6752 0.9148
90 images 0.4795 0.7884 0.6913 0.9268

Fig. 6: 3D RGB Inversion. When presented with an arbitrarily posed input RGB
image, our model concurrently optimizes the latent code z and pose code to develop a
3D representation. It effectively functions as a segmentation model, capable of rendering
segmentations from various viewpoints for the given input image.

leads to a significant improvement in performance. Moreover, Tab. 4 shows in-
corporating a density prior from the pretrained RGB decoder into the semantic
branch is also beneficial. Further, we investigate how the number of training sam-
ples affects performance in Tab. 5. Our findings suggest a moderate improvement
when increasing the sample size from 30 to 90 images.

5.4 Applications

We explore a series of applications with our approach, including 3D inversion
and 3D-aware editing.
3D RGB Inversion. DatasetNeRF functions effectively as a segmentation
model. When given a arbitrary posed RGB image, GAN inversion techniques [78]
are employed to jointly optimize the input latent code and pose parameters. The
optimized latent code uncovers the underlying 3D structure, thereby allowing for
precise rendering of semantic segmentation from multiple viewpoints. The op-
timization is supervised by MSE loss and Adam [31] optimizer is used. The
inversion result is showed in Fig. 6.
3D Segmentation Inversion. Pix2pix3D [14] introduces a conditional GAN
framework to infer a 3D representation from an input semantic mask. While
effective, this approach requires extensive training annotations and significant
computational time. DatasetNeRF offers an alternative for accomplishing the
similar task. Utilizing an arbitrarily posed semantic mask, our model conducts
GAN inversion through its semantic branch. In this process, we jointly optimize
the input latent code z and the pose, employing cross-entropy loss and gradient
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Fig. 7: 3D Segmentation Inversion. Given an arbitrary posed input semantic mask,
we jointly optimize the latent code z and pose code to construct a 3D representation.
The inherent 2D-to-3D ambiguity in this process results in a significant diversity in
the 3D reconstructions. This optimized representation allows rendering from various
viewpoints.

Fig. 8: Semantic Editing Results. Our 3D editing system enables users to modify
input label maps and subsequently acquire the corresponding updated 3D representa-
tion. We can render the updated 3D representation from different views.

descent as our optimization strategies. The Adam optimizer [31] is employed in
this process. The results of this process are illustrated in Fig. 7.
3D-aware Semantic Editing. Our 3D editing system enables users to modify
input label maps and subsequently acquire the corresponding updated 3D repre-
sentation. To accomplish this task, our system focuses on updating the semantic
mask output to align with the edited mask while preserving the object’s texture
through GAN inversion. Initially, GAN inversion is employed to determine the
initial latent code z from a given forward-oriented input image, which serves as
the starting point for subsequent optimization, enhancing performance. Subse-
quently, this latent code is refined through GAN inversion to yield the optimized
updated representation. We define the region of interest r as a binary mask which
includes the union region of the label region before and after the edit. We define
the loss function L(z; r) to quantify the quality of an edit based on the latent
code z and the region of interest r. It is given by:

L(z; r) = λ1 · Llabel(Gsemantic(z);Medit)

+ λ2 · Lrgb(r ⊙Grgb(z); r ⊙ Irgb)

+ λ3 · Lvgg(r ⊙Grgb(z); r ⊙ Irgb),

where:
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– Gsemantic(z) is the rendered semantic mask from z with the semantic branch
Gsemantic.

– Grgb(z) is the rendered RGB image with the RGB branch.
– Medit is the edited semantic mask.
– Llabel is the cross-entropy loss for semantic consistency.
– r is the complement of the region r.
– ⊙ is the element-wise product.
– Irgb is the original RGB image.
– Lrgb measures the RGB prediction’s mean squared error.
– Lvgg is the perceptual loss calculated using a VGG-based network.
– λ1, λ2, λ3 balance the loss components.

When editing on the FFHQ dataset, an additional identity loss [56] is incor-
porated, which calculates the cosine similarity between the extracted features of
both the input and edited faces. Fig. 8 shows the edited results.

6 Limitations and Future Work

One limitation of our approach is its reliance on the availability and suitability of
pre-annotated data, which restricts its application to more general contexts, such
as indoor scene segmentation. In addition, our current approach utilizes the gen-
erators of 3D GANs, such as EG3D [8] and GNARF [6], as the backbones of our
model. While these 3D GANs adeptly handle single-category data distributions,
we aim in our future work to expand this approach to diffusion models, taking
advantage of their broader generative diversity. Moreover, although reshaping
the concatenated feature into a tri-plane structure has been shown to signifi-
cantly enhance segmentation quality, it presents challenges in terms of memory
efficiency and computational demands. An intriguing avenue for future research
lies in identifying the most representative semantic features within the generator
backbone, thereby optimizing memory usage and reducing computational load.

7 Conclusions

We present an efficient and powerful approach to developing a 3D-aware data
factory, requiring only a minimal set of human annotations for training. Once
trained, the model is capable of generating multi-view consistent annotations
and point cloud part segmentations from a 3D representation by sampling in the
latent space. Our approach is versatile, compatible with both articulated and
non-articulated generative radiance field models, making it applicable for a range
of tasks such as consistent segmentation of human body poses. This method
facilitates advanced tasks like 3D-aware semantic editing, and 3D inversions
including segmentation and RGB inversions. The capability of our model to
efficiently produce a wide range of 3D-aware data from a limited set of 2D labels
is not only crucial for training data-intensive models but also opens up new
possibilities in various 2D and 3D application domains.
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Supplementary Material

8 Self-annotated Fine-grained Dataset

We show more in detail about the fine-grained annotation dataset of AFHQ-
Cat [13] and AIST++ dataset [35] in Figure S9.
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Fig. S9: Detailed label illustration for different datasets.

9 Analysis and Evaluation Metrics for 3D-Consistency

We show spatiotemporal line textures [7] of semantic masks from different poses
in Fig. S10.

(a) (b)

Fig. S10: Spatiotemporal line RGB and semantic textures. Zoom in to better visualize
the green line segments in the RGB images.
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10 Real-world Human Face Scan Segmentation Results

We present additional real-world human face scan segmentation results. Figure
S11a displays a sample selected from the Nersemble dataset [32], along with
its segmentation outcomes. Conversely, Figure S11b shows a sample obtained
from a self-scanned human face using a smartphone. Both examples demonstrate
segmentation results that are both decent and reasonable.

(a) Scan segmentation result for the sample
from Nersemble dataset [32].

(b) Scan segmentation result for the self-
created scan.

Fig. S11: Real-world human face scan segmentation results for samples from Nersemble
dataset [32] and self-made scan.

11 ShapeNet-Car Point Cloud Segmentation Performance
Saturation

ShapeNet-Car [10] Point Cloud Segmentation Performance Saturation: Table
Tab. 3 in the main paper shows minimal performance gains due to a satura-
tion in PointNet’s capabilities, observed when training with approximately 1000
ShapeNet-Car samples (Fig. S12).

12 Segmentation with Foundation Features

We conduct the suggested experiment and use pretrained DINOv2 features [50]
to train a segmentation model with our 90 annotated images. For testing, we
feed the model frames from our test video sequences. As shown in Fig. S13, our
method’s segmentation (left) is less noisy and more accurate than the DINOv2-
based segmentation (right).
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Fig. S12: Experiments showing PointNet segmentation performance saturation. The
red curve represents accuracy and blue curve represents mIoU.

Fig. S13: The comparisons with our result (left) with DINOv2 based method (right).
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