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Figure 1. GenFusion introduces a reconstruction-driven generative model to enable artifact-free 3D asset generation and view synthesis
for both view interpolation and extrapolation.

Abstract
Recently, 3D reconstruction and generation have demon-

strated impressive novel view synthesis results, achieving
high fidelity and efficiency. However, a notable conditioning
gap can be observed between these two fields, e.g., scalable
3D scene reconstruction often requires densely captured
views, whereas 3D generation typically relies on a single or
no input view, which significantly limits their applications.
We found that the source of this phenomenon lies in the mis-
alignment between 3D constraints and generative priors. To
address this problem, we propose a reconstruction-driven
video diffusion model that learns to condition video frames
on artifact-prone RGB-D renderings. Moreover, we pro-
pose a cyclical fusion pipeline that iteratively adds restora-
tion frames from the generative model to the training set,
enabling progressive expansion and addressing the view-
point saturation limitations seen in previous reconstruc-
tion and generation pipelines. Our evaluation, including
view synthesis from sparse view and masked input, vali-
dates the effectiveness of our approach. More details at
https://genfusion.sibowu.com.

1. Introduction
Generating 3D assets is a fundamental task in computer
vision and computer graphics, with broad applications in
AR/VR, autonomous driving and robotics. Recent advances

in Neural Radiance Fields (NeRF [36], Mildenhall et al.
in 2020) and Gaussian Splatting (GS [27], Kerbl et al. in
2023) have enabled high-fidelity 3D scene reconstruction
and novel view synthesis. They employ MLP or Gaussian
primitives to represent scenes and optimize 3D representa-
tion through photometric loss. However, this line of work
inherits a key limitation: faithful reconstruction relies on
abundant viewpoint coverage; under-observed regions or
viewpoints may lead to significant artifacts or missing con-
tent.

This is primarily because reconstructing NeRFs or GSs
from multi-view images is inherently underconstrained, as
an infinite number of photo-consistent explanations may
exist for the input images [41, 64]. Consequently, re-
construction models tend to generate “floaters” or “back-
ground collapse” artifacts to fake view-dependent effects,
even when supplied with dense and well-captured high-
quality images [47]. This observation has motivated a se-
ries of regularization techniques to constrain neural field
training, including sparsity regularizers [22, 57], smooth-
ness losses [37, 56, 63] and monocular geometric cues [62].
For example, ReconFusion [49] regularizes a NeRF-based
3D reconstruction pipeline by introducing a sample loss be-
tween novel random camera poses and images predicted by
a PixelNeRF-style image diffusion model, yielding signif-
icant performance improvements over previous NeRF re-
construction methods in sparse setting. In contrast, feed-
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forward reconstruction methods [5, 6, 10, 14, 58, 61] learn
inductive biases directly from the dataset. While recent ad-
vances enable 3D reconstruction from as few as a single
image, existing feedforward reconstruction methods exhibit
performance saturation when processing more than 4-8 im-
ages. This limitation arises primarily from the architectural
constraints of conventional feedforward networks in effec-
tively aggregating and utilizing information from multiple
viewpoints.

Meanwhile, generative methods have demonstrated the
potential of obtaining 3D assets without multi-view capture.
Leveraging large-scale datasets and scalable architectures,
models like Stable Diffusion (SD) have achieved remark-
able progress in image and video generation [3, 21, 23]. Re-
cent work has applied these approaches to generate 3D as-
sets. For example, DreamFusion [39] introduces Score Dis-
tillation Sampling (SDS) to perform text-to-3D synthesis
using a pre-trained 2D text-to-image diffusion model, while
another line of research [4, 30, 60] explores single-view
scene extrapolation by progressively in/outpainting layered
depth image.

Despite these advances in 3D reconstruction and gen-
eration, a notable conditioning gap remains: scalable
3D reconstruction typically requires dense view coverage,
whereas generation methods often operate with single or
even no input view. Our paper explores how 3D recon-
struction and generation can complement each other in a
scalable manner, relaxing the constraints on the number of
input views.

We introduce GenFusion, a novel reconstruction method
that leverages video generative model to achieve artifact-
free 3D scene reconstruction and content expansion along
novel trajectories by leveraging the proposed reconstruction
pipeline, as illustrated in Figure 2. The core of our approach
is a simple and scalable reconstruction-driven video gener-
ation architecture that predicts realistic video from artifact-
prone renderings. Specifically, we first fine-tune Dynam-
iCrafter [52] using RGB-D videos reconstructed from a
large-scale, real-world scene-level video dataset [34]. We
patchify the capture videos into patches, then randomly se-
lect a patch sequence to perform 3D scene reconstruction,
rendering full-frame RGB-D videos as input to our video
diffusion model, which is subsequently supervised by the
original video capture and its monocular depth. Our key
insight is that masked 3D reconstruction enables flexible
pre-training of video models. As shown in Figure 3, mask-
ing 75% of the input pixels during 3D reconstruction pro-
duces artifacts and missing regions sharing similar artifact
patterns with far-field viewpoint rendering. The resulting
artifact-prone video is encoded into latent space, with dif-
fusion guided by a scene description token processed by a
CLIP model on a randomly sampled frame. In addition,
the baseline video diffusion model, conditioned only on

text and RGB, lacks sequence input handling and geometry
constraints for view consistency. To address this, we em-
bed input views as latent sequences and incorporate depth
by replacing the RGB VAE with an RGB-D VAE. Once
trained, we introduce a cyclic reconstruction-generation fu-
sion scheme for scalable 3D scene generation with artifact
correction.

Our GenFusion learns very high-capacity models that
generalize well, we make the following contributions:
• We introduce a reconstruction-driven video diffusion

model that efficiently repairs reconstruction artifacts and
generates new content in invisible regions.

• We design a masked 3D reconstruction for artifact-GT
video pair generation, serving as a new novel view syn-
thesis evaluation protocol for far-field viewpoints.

• Experiments on challenging benchmark datasets [1, 28,
34] demonstrate the effectiveness of GenFusion in syn-
thesizing views distant from the training views.

• Our approach to bridging 3D reconstruction and gener-
ation through videos is principled and straightforward,
picking the best of these two fields.

2. Related Work

Regularization Techniques: Optimizing 3D scene repre-
sentations, e.g., NeRF [36] and 3DGS [27], from 2D images
inherently involves an ill-posed inverse problem, where
multiple solutions may exist for a given set of observa-
tions. To address these challenges, various techniques have
been proposed to constrain the optimization of scene rep-
resentations. In general, unsupervised regularization tech-
niques are based on the assumption that the 3D represen-
tation should be sparse [22, 57], smooth [37, 56, 63], low
rank [7–9]; rendering weights to be compact [1]; or ge-
ometry/texture to be consistent with nearby views in image
space [15, 16, 18]. In addition to the multitude of regular-
ization strategies available, many optimization techniques
have been proposed to enhance training procedures. For ex-
ample, gradient scaling [38] is applied for NeRF to address
the issue of high-magnitude gradients in regions close to
the camera, where more points are sampled, often leading
to artifacts known as floaters. One of the most impactful
approaches is the “coarse-to-fine” training [31, 32], which
modulates the frequency band of positional encodings or
hash grid resolution. Another line of research leverages
pseudo-observations by using off-the-shelf models to pre-
dict cues that enhance reconstruction quality, such as sparse
point clouds [17] and monocular depth/normal maps [62].
These approaches are also employed in 3DGS representa-
tions [29, 65]. Recently, combining generation models to
generate novel views as regularization has proved to be ef-
fective in reconstruction objects [55] and scene [35, 49].
Our work aligns closely with ReconFusion [49] and the con-
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Figure 2. GenFusion pipeline. Our approach contains two stages: video diffusion pre-training (left) and zero-shot generalization (right).
In pre-training, we first fine-tune DynamiCrafter [52] on RGB-D videos from a large-scale real-world scene video dataset [34]. Captured
videos are patchified, and a random patch sequence is selected for 3D scene reconstruction, rendering full-frame RGB-D videos as input to
our video diffusion model, supervised by the original video capture and its monocular depth. During generalization, we treat reconstruction
and generation as a cyclical process, iteratively adding restoration frames from the generative model to the training set for artifact removal
and scene completion.

current 3DGS-Enhancer [35], both of which utilize genera-
tive priors to guide the optimization of 3D representations.
Despite these methods achieve impressive view interpola-
tion results in sparse-view scenarios, they still struggle with
rendering trajectories that deviate significantly from the in-
put views.

Feed-forward 3D Reconstruction: In contrast to the per-
scene optimization required by neural fields, recent research
has explored feed-forward architectures capable of regress-
ing 3D scene representations from a sparse set of input im-
ages. These methods learn 3D representations from input
images and directly predict novel views in a feed-forward
manner. PixelNeRF [59] predicts neural radiance represen-
tations from input images, using a convolutional network
for efficient feature extraction. MVSNeRF [6] pioneers
the paradigm of leveraging cost volumes to regress realis-
tic images from novel viewpoints. Subsequent works [12,
26, 33, 53] further improve performance through enhanced
feature matching architectures. In the context of 3DGS,
pixelSplat [5] directly regresses scene-level 3D representa-
tions from paired images, incorporating an epipolar trans-
former module to effectively capture view-dependent geo-
metric correspondences. MVSplat [14] builds a cost vol-
ume representation to learn cross-view feature similarity,
achieving high-quality scene generation with improved ef-
ficiency. Recently, DepthSplat [54] further boosts the per-
formance using a pre-train multi-view depth estimator, and
Long-LRM [66] utilizes Mamba2 blocks to handle many
input views. To handle single view inputs, Flash3D [45] ex-

tend monocular depth estimation to 3D shape and appear-
ance reconstruction. Recently, SplatFormer [13] proposes
a learning-based model to refine Gaussian splats, enabling
out-of-distribution novel-view synthesis. However, exist-
ing feed-forward methods are limited to a small number of
views - typically fewer than 10 - which significantly restricts
their application.

View-Conditioned Generation: Generative models have
emerged as a promising solution to synthesize plausible
content for regions without observations. Thanks to their
success in image generation, diffusion models are widely
used for multi-view synthesis. Early work 3DiM [48]
trains a pose-conditional image-to-image diffusion model
for object-centric novel view synthesis. Follow-up re-
search Zero-1-to-3 [20] advanced this approach by fine-
tuning large-scale pre-trained diffusion models on synthetic
datasets. SSDNeRF [11] jointly optimize diffusion and
NeRF auto-decoder to synthesize novel views for object.
Recently, ZeroNVS [42] and CAT3D [19] extended the
paradigm by training diffusion models with camera pose
and multi-view image conditioning. Nevertheless, relying
solely on 2D features proves insufficient for maintaining 3D
consistency across generated views. Several works [44, 51]
inject 3D information into diffusion models for improved
geometric understanding. For instance, ViewCrafter [61]
explicitly utilizes 3D information from point clouds and ex-
pands it iteratively, facilitating consistent interpolation be-
tween two views. To enable generating long sequences
of 3D scenes from a single input image, InfiniteNature-



Zero [30] and following work [4, 46, 60] explore single-
view scene extrapolation by progressively in/outpainting
layered depth images predicted by a monocular estimator.
While these generative methods achieve visually appealing
3D asset generation, their reconstruction quality and view
coverage, particularly at scene scale, remains far from that
of 3D scenes reconstructed from densely captured multi-
view data.

3. GenFusion
Our goal is to construct artifact-free 3D scenes with con-
tent augmentation given conditioning views {Ii} (i >= 1).
The core idea to align 3D reconstruction and generation
through video renderings. Specifically, we propose a cyclic
fusion approach where 3D reconstruction and generation
benefit each other in a virtuous cycle: during the reconstruc-
tion process, we iteratively leverage information from the
generative model to improve reconstruction quality; mean-
while, more accurate reconstruction results help the gener-
ative model produce more realistic and consistent content.
This bidirectional enhancement mechanism creates a posi-
tive feedback loop.

In the pre-training stage, we aim to train a model that
learns from large-scale scenes, which then serves as guid-
ance for optimizing general ill-posed 3D lifting tasks, such
as reconstructing 3D from sparse views. We use a video
diffusion model as guidance, pre-trained on video captures
and their artifact-prone renderings of 3D reconstructions.
Specifically, we train a generative model Gϕ by maximiz-
ing the expected log-likelihood of generating the complete
image given the reconstruction from a masked input:

argmax
ϕ

E
[
log pϕ

(
I | Rθ(Ĩ)

)]
(1)

where Rθ denotes a reconstruction and rendering func-
tion (e.g., NeRF or 3DGS) and Ĩ denotes the masked ver-
sion of target image I . To make the generation process 3D
aware, our video diffusion model learns to capture the un-
derlying distribution of images by conditioning on artifact-
prone rendering video Rθ(Ĩ) in our case.

With the video diffusion model, we propose optimizing
the 3D scene representation, θ, guided by both input image
conditions and generated video for a new scene. Specif-
ically, we maximize the similarity between the novel view
videos rendered from 3D representation and the videos gen-
erated from our pre-train diffusion model, therefore the gra-
dient of 3D representation is propagated from the photomet-
ric loss:

argmin
θ

E
[∣∣∣Gϕ(Îk+1 | Rθ(Ĩk))−Rθ(Îk+1)

∣∣∣
2

]
(2)

where k denotes the iteration index.
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Figure 3. Artifact-GT video pair generation using masked re-
construction. a) current SOTA Gaussian Splatting methods ren-
der accurately near training views but produce artifacts for distant
views due to limited angular supervision, like the red trajectory.
b) we propose a masked reconstruction scheme to replicate such
artifact patterns for training video diffusion models by masking
75% of pixels during 3D reconstruction and re-rendering the scene
along the original trajectory, including the masked pixels.

In the following sections, we first introduce our
reconstruction-driven generation architecture, i.e.
Gϕ(I|Rθ(Ĩ)), in Sec. 3.1. Next, we detail our cyclic
generation and reconstruction fusion process in Sec. 3.2.

3.1. Reconstruction-driven Generation

We generate view-consistent video by conditioning the cur-
rent fragment’s generation on previous corrupted recon-
structions. To generate corrupted reconstructions, we pro-
pose a masked 3D reconstruction approach for generating
training data, along with a new video diffusion model that
facilitates 3D-aware generation and regularization.

Masked 3D Reconstruction. We now discuss how to
learn novel view generalization capability in a reconstruc-
tion paradigm from open-world large-scale videos. Given
video captures of a scene, a straightforward approach is to
downsample frames at uniform intervals or split the input
sequence at the midpoint into train/test segments for scene
reconstruction, then render the reconstructed scene from the
testing camera viewpoints to generate artifact-prone data.
These rendered sequences and original video captures then
serve as input and output pairs for video diffusion model
training. However, we observe that these sampling schemes
limit models to either view interpolation or pure genera-
tion. Specifically, scenes are often fully covered by sampled
views, with target views located adjacent to these, while
the alternative approach often leaves most content unseen
in the training segment. Our work aims to learn regular-
ization and generate new content in trajectories that deviate
significantly far from the capture trajectories.
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Figure 4. Reconstruction-driven Video Generation. Our video diffusion model is able to generate realistic RGB-D video from artifact-
prone RGB-D renderings, which is then used as photometric guidance in our cyclic fusion period.

To this end, we propose a masked 3D reconstruction
technique to obtain corrupted 3D scenes from observations
across both spatial and temporal dimensions, then render
images for the full input sequence to generate the training
dataset. In specific, we divide input image captures into
4 regular non-overlapping patches, i.e. top-left, top-right,
bottom-left and bottom-right, as shown in Figure 3. Then
we sample the top-left or bottom-right patch region and
mask out (i.e., remove) the remaining three for each scene.
The sampled patch sequence is used to conduct 3D recon-
struction using the standard approaches, i.e. 2D Gaussian
Splatting (2DGS) [25] in this paper. Note that the mask
is applied per scene rather than per view, forcing the recon-
struction process to have limited view coverage. In practice,
since we use open-world large-scale video sequence cap-
tures I for training, which further increases sparsity − views
are dense only on the trajectory but extremely sparse in an-
gle coverage − unlike standard multi-view datasets such as
Mip-NeRF 360 [1].

With masked reconstruction, we render full-view videos
along the same camera poses as the input to form real cap-
ture and reconstruction rendering pairs for our video dif-
fusion model training. Our insight is that reconstructing
from masked images simulates a narrower field-of-view
camera, requiring that context outside the mask be inferred
from views deviating from the current viewpoint, which
promotes view extrapolation. Moreover, rendering to full
view introduces unconstrained regions with extensive black
backgrounds, facilitating content outpainting.

Video Diffusion.
In essence, we build our video generation model

upon the foundation of pre-trained DynamiCrafter [52] -
an image-to-animation model - and adapt the model to
reconstruction-related video restoration tasks.

More specifically, we enhance frame consistency by in-
corporating geometric information into the generation pro-
cess. This is achieved by replacing the VAE in the base-
line model with a pre-trained RGB-D VAE, where en-
coder and decoded are denoted as E and D respectively.
It allows depth to be integrated without altering the dif-
fusion architecture. In the training process, the ground
truth RGBD video IRGB−D are encoded into latent space
z := E(IRGB−D), which we add noise in different timestep
t and obtain zt. To guide the generation process under
reconstruction result, We provide two conditions c. The
artifact-prone RGB-D video I

′

RGB−D is encoded and con-
catenated with per-frame initial noise to support sequence
conditioning. This allows rich visual details from the ren-
dered videos to condition the generation process effectively.
Additionally, we select the input view closest to the ren-
dering trajectory and embed its ground-truth image into the
CLIP feature space. This high-level conditioning provides
global information about the scene content. Thus the video
denoising network ϵθ is optimized by:

L = EE(x),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (3)

The refined latent is subsequently decoded into the final
RGB-D video through a pre-trained VAE decoder V̂ =
D(z) [44].

3.2. Cyclic Fusion

We build our fusion process upon the popular 2D Gaussian
Splatting and use a number of 2D oriented planar Gaussian
disks to represent 3D scenes. Gaussian disks are parameter-
ized by center position p ∈ R3×1, opacity (scale) α ∈ [0, 1],
two principal tangential vectors tu and tv for orientation,
a calling vector S = (su, sv), and Spherical Harmonices



(SH) coefficients. We refer the reader to the original paper
for representation and splatting details [25]. In the follow-
ing, we introduce how to initialize and progressively update
the Gaussian primitives by fusing the 3D reconstruction and
video diffusion output.

Fusion. We follow the original 3DGS approach by reusing
the calibration point cloud for initialization. We initialize
Gaussians and their attributes, which are then updated end-
to-end based on rendering losses. The optimization process
operates as a reconstruction and generation cycle, supervis-
ing Gaussians with both input conditioning and novel gen-
erated views. More concretely, for every K iteration, we be-
gin with sample new trajectories and render RGB-D videos
based on the current reconstruction. We feed these ren-
dering sequences to our video diffusion model to generate
artifact-free videos, which are then added to the supervision
set, as shown in Figure 2. The cyclic process enables arti-
fact correction in under-observed regions and generates new
content for areas that are invisible within the input views.

Among these, we find that novel trajectory sampling
is the most critical component. To ensure comprehensive
view and angle coverage, we employ two types of trajec-
tories: view interpolation between neighboring input views
and a spiral/spherical path generated across all input camera
poses.

Content Expansion. Large unobserved areas can appear
as black or noisy pixels when the sampling trajectories are
away from the input views. Although we use generation
outputs as supervision for these regions, we found it chal-
lenging to split and clone new Gaussians [27] due to the
absence of surrounding Gaussians. We solve this issue by
adaptively adding new Gaussian points to the scene dur-
ing optimization, using an unreliable depth-based mapping.
Pixels are considered unreliable when

T < τT or |D − D̂| > τD (4)

where T is cumulative opacity, D and D̂ are rendered depth
and aligned generated depth D respectively. τT and τD are
hyperparameter thresholds.

For these unreliable areas, we add new Gaussians by
back-projecting the generated RGB-D points into 3D space,
similar to the initialization stage. Note that for the newly
added Gaussians, position and color values are directly ob-
tained from the RGB-D video, while other attributes are ini-
tialized as in 2DGS.

Loss function. During cyclic fusion, we freeze the video
diffusion model and optimize the 3D representation end-
to-end, using simple photometric losses between rendered
RGB-D images and input (i.e. Lrecon) and generated views
(i.e. Lgen):

L = Lrecon + λLgen (5)

where Lrecon = λl1 · Ll1 + λSSIM · LSSIM + λmono ·
Lmono, and the Lmono is a scale-invariant depth loss, as
used in [62] that enforces consistency between our rendered
rendered depth D̂ and the monocular depth D predicted by
our video diffusion model. The generation loss Lgen shares
components but is instead applied to generated images.

To stabilize the optimization process, we use an Sinu-
soidal warm-up and annealing strategy for the generation
loss weight λ, which is defined as:

λ(k) = 1.0 · sin
(

k −Kstart

Kend −Kstart
· π

)
(6)

where k is the iteration, and Kstart and Kend are the start and
end iteration of the diffusion term.

4. Experiments
We begin with the experimental setup for training and eval-
uating our GenFusion. Next, we present our reconstruction-
driven video diffusion model and compare it quantitative-
ly/qualitatively with state-of-the-art methods for sparse-
view 3D reconstruction and view synthesis. Finally, we
demonstrate the generative capabilities of our method with
scene completion.

4.1. Experimental Setup

Training set: We train our diffusion model on DL3DV-
10K [34], a large-scale dataset containing 10,510 videos, in-
cluding 140 benchmark scenes. To prepare reconstruction-
gt video pairs for diffusion model training, we optimize
each scene for 7K steps using our masked 3D reconstruction
scheme introduced in Section 3.1. The number of training
views are uniformly downsampled to 1/4 frames for each
video to ensure sufficient sparsity, and we render the re-
constructed scenes along the original trajectories at a res-
olution of 960 × 540 and augment the dataset with depth
information using the current SOTA monocular depth esti-
mator [24].
Evaluation Dataset: We evaluate our method on diverse
scenes from three datasets, including 24 scenes from the
DL3DV-Benchmark [34], 7 scenes from Tanks and Tem-
ples (TnT) [28], and 9 scenes from the Mip-NeRF360 [1]
dataset, see supplement for details.
Implementation Details: In this work, we adopt Dynami-
Crafter [52] as the video diffusion backbone and fine-tune
the model on artifact-GT RGB-D video pairs. The fine-
tuning includes both coarse and fine stages: in the coarse
stage, the video resolution is set to 16×320×512×4 with



Method RGB VAE RGB-D VAE RGB-D VAE RGB-D VAE
Frames 16 16 48 16
Resolution 512×320 512×320 512×320 960×512
FID↓ 26.1607 25.4006 29.3545 22.5526

Table 1. Analysis on reconstruction-driven video diffusion
model.

PSNR ↑ SSIM ↑ LPIPS ↓
3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg.

Zip-NeRF [2] 12.77 13.61 14.30 13.56 0.271 0.284 0.312 0.289 0.705 0.663 0.633 0.667
DiffusioNeRF [50] 11.05 12.55 13.37 12.32 0.189 0.255 0.267 0.237 0.735 0.692 0.680 0.702
FreeNeRF [56] 12.87 13.35 14.59 13.60 0.260 0.283 0.319 0.287 0.715 0.717 0.695 0.709
SimpleNeRF [43] 13.27 13.67 15.15 14.03 0.283 0.312 0.354 0.316 0.741 0.721 0.676 0.713
ZeroNVS [42] 14.44 15.51 15.99 15.31 0.316 0.337 0.350 0.334 0.680 0.663 0.655 0.666
ReconFusion [49] 15.50 16.93 18.19 16.87 0.358 0.401 0.432 0.397 0.585 0.544 0.511 0.547
3DGS [27] 13.06 14.96 16.79 14.94 0.251 0.355 0.447 0.351 0.576 0.505 0.446 0.509
2DGS [25] 13.07 15.02 16.67 14.92 0.243 0.338 0.423 0.335 0.580 0.506 0.449 0.512
FSGS [63] 14.17 16.12 17.94 16.08 0.318 0.415 0.492 0.408 0.578 0.517 0.468 0.521
GenFusion (Ours) 15.29 17.16 18.36 16.93 0.369 0.447 0.496 0.437 0.585 0.500 0.465 0.517

Table 2. Quantitative evaluation of sparse view 3D reconstruc-
tion methods on Mip-NeRF360 dataset. Our approach demon-
strates strong performance across a variety of domains, surpassing
baseline methods in most cases. We color each column as: best ,
second best , and third best . The NeRF baseline results above

are taken from Reconfusion.

a latent space dimension of 16×40×64×4. We train this
stage for 30K steps with a learning rate of 1×10−5 and a
batch size of 2 on four H100 GPUs. The model is then fine-
tuned to a higher resolution of 16×512×960×4 for another
34K steps in the fine stage. To handle the RGB-D format,
we use a frozen RGB-D VAE from LDM3D [44]. During
inference, we apply DDIM sampling with 25 steps and set
the classifier-free guidance scale to 3.2.

For zero-shot generalization, we use 2DGS as the 3D
representation and initialize with the COLMAP point cloud.
In our experiments, views are masked and frames are down-
sampled; we filter and retain only the points visible from the
training views for point cloud initialization.

4.2. Video Generation

In this paper, we introduce a reconstruction-driven video
diffusion architecture that enables novel view regularization
and content generation. We report the VAE design and its
impact on video resolution in Table 1. Surprisingly, we find
that our model fine-tuned with RGB-D VAE achieves a bet-
ter FID score than the RGB VAE, even though the diffusion
backbone was originally pre-trained on the RGB VAE latent
space. Significant improvement can be observed when in-
creasing the spatial resolution from 512×320 to 960×512.
We show the visualization results of our diffusion model
in Figure 4, our video diffusion model effectively removes
“floaters” from the input video while generating realistic
content in black-pixel regions.

4.3. View Interpolation

Next, we evaluate our method in a view interpolation sce-
nario where the target scene is fully covered by the input
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Figure 5. Qualitative comparison of novel view synthesis using
sparse view input on Mip-NeRF360 scenes [1].

DL3DV 1/2 fps. TnT 1/2 fps. DL3DV 1/4 fps. TnT 1/4 fps.
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS [27] 17.22 0.740 0.314 15.95 0.653 0.414 16.90 0.728 0.321 14.75 0.609 0.440
2DGS [25] 16.56 0.717 0.323 15.46 0.640 0.409 16.02 0.693 0.336 14.38 0.589 0.440
FSGS [63] 18.25 0.722 0.362 16.72 0.625 0.465 17.83 0.710 0.370 16.04 0.607 0.473
Ours 20.47 0.788 0.284 17.45 0.662 0.427 20.01 0.780 0.292 16.29 0.630 0.447

Table 3. Quantitative comparison on DL3DV [34] and TnT [28]
datasets. Each method is trained for 7,000 steps. Our method
outperforms baselines by a significant margin.

views, and testing views lie between these inputs— a com-
mon setup in prior regularization evaluations. We compare
our method with previous regularization techniques on the
Mip-NeRF 360 test set using 3, 6, and 9 input views, as
shown in Table 2.

Our results demonstrate that our method achieves more
realistic novel view synthesis than the 3DGS and 2DGS
baselines, as well as recent FSGS, by a significant margin.
It is worth noting that Gaussian Splatting is known to be
more challenging to train than NeRF, especially in sparse
view settings. We significantly narrow this gap, and, for
the first time, show that Gaussian Splatting achieves perfor-
mance comparable to state-of-the-art NeRF on the challeng-
ing Mip-NeRF360 dataset in sparse view settings.(see Ta-
ble 2 and Figure 5).

4.4. View Extrapolation

Unlike sparse view reconstruction, our paper focuses on a
more practical scenario: generating complete, artifact-free
3D scenes from video captures. In reality, video offers
dense sampling along the trajectory but highly sparse view-



3DGS [27] 2DGS [25] FSGS [65] Ours GT
Figure 6. Qualitative comparison of novel view synthesis using masked input on DL3DV scenes [34]. Gaussian Splatting methods can
easily overfit to training views, producing holes and needle-like artifacts when viewed from distant viewpoints. Our method effectively
repairs these artifacts while augmenting invisible regions.

point coverage. While video is easy to capture and cali-
brate, it’s challenging for 3D reconstruction, even recon-
struction with state-of-the-art reconstruction methods can
easily overfit to training views and produce serious artifacts
for the viewpoints that are far away from the training views,
see Figure 3. Therefore, we care about the novel view syn-
thesis quality from the far field.

To this end, we propose a new evaluation protocol and
reuse the masked reconstruction to mime the far-field ren-
dering while preserving the reference, as introduced in Sec-
tion 3.1. Specifically, we downsample the video sequence
at different time ratios for the train/test split (e.g., 1/2 and
1/4 in Table 3) and select a patch covering about 25% of
the pixels in the training viewpoint for reconstruction, while
evaluating on the full field of view of test viewpoints. Note
that fixing the path location can result in many invisible and
black regions, leading to bias in our generative methods,
where the baselines may have significant errors in these ar-
eas. To ensure a reasonable comparison, we assign a trajec-
tory to the masking path to provide more complete content
coverage, see supplementary video.

Table 3 and Figure 6 show quantitative and qualita-

tive results comparing our method with baselines on the
DL3DV-benchmark and TnT scenes. GenFusion achieves
significantly better rendering quality than the baselines,
thanks to the strong prior from the diffusion model. It effec-
tively removes needle-like artifacts and augments realistic
3D content for the invisible regions.

Scene Completion. Furthermore, GenFusion not only pro-
vides content augmentation at the 3D scene boundary but
also achieves scene-level completion, as shown in Figure 1.
Please refer to our webpage for more results.

5. Discussion

We have presented GenFusion, a novel model for artifact-
free 3D asset generation. First, we adapt an existing well-
trained 2D video diffusion model to drive a powerful 3D
guidance with minimal modifications. Second, cyclical
fusion enables scalable and robust 3D lifting, efficiently
closing the loop between 3D reconstruction and generation
through video synthesis. Several limitations are evident:
our method requiring additional denoising steps and slightly
increasing training time (about 40 minutes per scene). Ad-



ditionally, filling large invisible regions can cause blurriness
due to inconsistency between video fragments. Modeling
and addressing this inconsistency in the fusion module will
be a key step toward achieving the next level of quality.
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sander Hołyński, and Angjoo Kanazawa. Nerfbusters: Re-
moving ghostly artifacts from casually captured nerfs. 2023.

[48] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. In
Proc. of the International Conf. on Learning Representations
(ICLR), 2023.

[49] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong
Park, Ruiqi Gao, Daniel Watson, Pratul P. Srinivasan, Dor
Verbin, Jonathan T. Barron, Ben Poole, and Aleksander
Holynski. Reconfusion: 3d reconstruction with diffusion pri-
ors. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2024.

[50] Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf:
Regularizing neural radiance fields with denoising diffusion
models. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[51] Jianfeng Xiang, Jiaolong Yang, Binbin Huang, and Xin
Tong. 3d-aware image generation using 2d diffusion mod-
els. In ICCV, 2023.

[52] Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen,
Wangbo Yu, Hanyuan Liu, Xintao Wang, Tien-Tsin Wong,



and Ying Shan. Dynamicrafter: Animating open-domain im-
ages with video diffusion priors. Proc. of the European Conf.
on Computer Vision (ECCV), 2024.

[53] Haofei Xu, Anpei Chen, Yuedong Chen, Christos Sakaridis,
Yulun Zhang, Marc Pollefeys, Andreas Geiger, and Fisher
Yu. Murf: Multi-baseline radiance fields. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2024.

[54] Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann
Blum, Daniel Barath, Andreas Geiger, and Marc Pollefeys.
Depthsplat: Connecting gaussian splatting and depth. arXiv
preprint arXiv:2410.13862, 2024.

[55] Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi
Xie, Xiaopeng Zhang, Wei Shen, and Qi Tian. Gaussianob-
ject: High-quality 3d object reconstruction from four views
with gaussian splatting. ACM Trans. Graph., 2024.

[56] Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Im-
proving few-shot neural rendering with free frequency reg-
ularization. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023.

[57] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2021.

[58] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021.

[59] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

[60] Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent,
Michael Rubinstein, William T. Freeman, Forrester Cole,
Deqing Sun, Noah Snavely, Jiajun Wu, and Charles Her-
rmann. Wonderjourney: Going from anywhere to every-
where. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2024.

[61] Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li,
Zhipeng Huang, Xiangjun Gao, Tien-Tsin Wong, Ying Shan,
and Yonghong Tian. Viewcrafter: Taming video diffusion
models for high-fidelity novel view synthesis. arXiv preprint
arXiv:2409.02048, 2024.

[62] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-
tler, and Andreas Geiger. Monosdf: Exploring monocu-
lar geometric cues for neural implicit surface reconstruc-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[63] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and
Eric P. Xing. Fregs: 3d gaussian splatting with progressive
frequency regularization. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2024.

[64] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020.

[65] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.
FSGS: real-time few-shot view synthesis using gaussian

splatting. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), 2024.

[66] Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yi-
cong Hong, Li Fuxin, and Zexiang Xu. Long-lrm: Long-
sequence large reconstruction model for wide-coverage
gaussian splats. arXiv preprint 2410.12781, 2024.



GenFusion: Closing the Loop between Reconstruction and Generation via Videos

Supplementary Material

A. Overview

In the supplementary materials, we provide comprehensive
experimental details and extensive ablation studies to eval-
uate the contributions of our framework designs. Addition-
ally, we present qualitative comparisons between our ap-
proach and baseline methods.

B. Experimental Details

B.1. Video Diffusion Model Details

Our diffusion model is built upon a pre-trained image-to-
video latent diffusion model [52] which operates on RGB
latent space. However, we found that relying only on RGB
inputs fails to produce consistent video frames, particu-
larly in regions with severe artifacts. Therefore, we lever-
age depth maps to inject geometry information into the
diffusion model. To process RGB-D inputs, we utilize a
pre-trained VAE from LDM3D [44], which is designed to
encode RGB-D image into the latent space. Therefore,
given an RGB-D video of size 4×T×512×320 (T : video
length), we flatten it along the first two dimensions, encode
it into latent features of shape 4T×64×40, and reshape to
4×T×64×40 for diffusion. For CLIP feature embedding,
we randomly sample a reference frame from the input se-
quence. During reconstruction, the nearest input frame to
the target trajectory serves as the reference for the CLIP
guidance. In the training process, each training example
comprises an artifact-prone RGB-D video, a reference im-
age, and one target RGB-D video. To obtain the temporally
consistent depth map for training, we leverage the SOTA
monocular depth estimatior [24] to augment the training
data. During inference, we employ DDIM sampling with
classifier-free guidance to modulate condition adherence
strength. To do so, we implement random dropout of con-
ditioning images with 10% probability per sample during
training.

In the video diffusion experiment section, we explore
different designations of diffusion model to identify the
optimal balance between model performance and compu-
tational efficiency. Therefore, four diffusion models are
trained and analyzed in three aspects, input type, resolution,
and video length. To this end, the base model that generates
16 frames of videos with a resolution of 512×320 is trained
for 30k iterations using a learning rate of 1e−5 and a batch
size of 2 on each GPU. To assess the impact of depth infor-
mation, we conduct a comparative analysis by training two
base models: one utilizing RGB-D inputs and another with
RGB inputs only. Both models are trained under identi-

cal hyperparameter settings to ensure a fair comparison. To
enhance the quality of generated videos, we fine-tune the
base RGBD model for higher resolution inputs (16 frames
at 960×512) with an additional 34k iterations, maintaining
the same learning rate and batch size configurations. To ex-
tend video generation capabilities, we fine-tune the tempo-
ral layers of our base model to produce 48-frame sequences
for 30k iterations while maintaining the base model’s batch
size and learning rate.

B.2. Masked 3D Reconstruction

In the main paper, we introduce a masked 3D reconstruc-
tion scheme to mime the far-field rendering artifacts. The
marked 3D reconstruction is used in both video diffusion
data generation and novel view synthesis evaluation. In
practice, we use a patch mask of size H/2×W/2 to enable
narrow field-of-view inputs in both settings. But differently,
we randomly select one of the four corner locations for
training dataset generation, since fixing the mask location
introduces diverse artifacts and under-observed regions, en-
riching the dataset’s complexity. However, the extremely
limited observation setup often produces large black regions
near the boundaries. Using such data directly for evaluation
can lead to unrealistically low quantitative metrics in these
regions due to content ambiguity. To enable a fair compar-
ison, we generate a trajectory to move the mask over time,
rather than fixing its location as in video data generation.
This ensures that most scene content is included in the in-
put. Notably, all baselines and our method use the same
sampling trajectories for each scene. To further reduce spar-
sity along the camera trajectory, we downsample the view-
points by factors of 2 and 4, using these masked frames as
our training input while using the remaining full frames for
evaluation.

B.3. Cyclic Fusion

We close the loop between reconstruction and generation
through cyclic fusion that updates the 3D scene representa-
tion (i.e. 2D Gaussian primitives) using input captures and
generated videos.

Warm-up: During the warm-up phase of the fusion pro-
cess, the 3D representation is updated exclusively from in-
put captures for the first 1000 iterations. Afterward, we ap-
ply our reconstruction-driven video diffusion every 1000 it-
erations to remove the artifacts and generate new content for
the video renderings, which are then added to the training
view set.

Sparsity-aware Densification: In the original Gaussian



No. Method PSNR↑ SSIM↑ LPIPS↓
1 2DGS baseline 13.87 0.572 0.447
2 +train view monocular depth 13.89 0.575 0.442
3 +sample view rgb 15.33 0.602 0.442
4 +sample view depth 15.34 0.622 0.438
5 +sparsity aware densification 15.81 0.617 0.409

Table 1. Ablation studies using on Tanks and Temples dataset. ↑
indicates higher is better, while ↓ indicates lower is better.

Splatting [27], scene primitives are cloned and split based
on the average magnitude of view-space position gradients,
and the gradient for each primitive is reset every K steps
(i.e., 100 steps in 3DGS and 2DGS). We find this strategy
performs well in scenarios where the scene is densely cap-
tured. In such cases, primitives are typically observed for
more than half of the reset steps (> K

2 ), making the aver-
aged gradient over K steps a reliable indicator for deciding
whether to add the primitive to the densification list. How-
ever, this strategy becomes unreliable for masked 3D recon-
struction, as the visibility counts of each Gaussian primitive
are significantly lower, resulting in unstable gradient accu-
mulation. To address this, we propose a sparsity-aware den-
sification strategy that maintains the densification list by in-
corporating minimal visibility counts. Specifically, we dis-
able gradient resets and add a primitive to the densification
list only if its gradient exceeds the threshold and its visibil-
ity count surpasses the minimal visibility requirement. Ac-
cordingly, we perform the densification process every 100
iterations to progressively refine the point cloud represen-
tation. We found this strategy is more robust for handling
diverse input scenarios.

C. Ablation Studies

In Table 1, we perform comprehensive ablation studies to
validate the contributions of our model components using
scenes from the Tanks and Temples dataset[28]. We begin
with a vanilla 2D Gaussian Splatting (2DGS) model, fol-
lowing its original implementation, as the baseline. Build-
ing on this, we evaluate the effect of incorporating monoc-
ular depth supervision during training and view sampling
using the ScaleAndShiftInvariant loss [40]. As shown in
(2) of Table 1, this addition does not yield quantitative im-
provements. However, it encourages smoothness in the ren-
dered depth, effectively reducing floating artifacts typically
observed during initial reconstruction stages (visualized in
Figure 1). Significant performance gains are observed in
(3) and (5) of Table 1, attributed to our RGB regularization
and sparsity-aware densification strategies, further confirm-
ing the effectiveness of our method.

D. More Evaluation
D.1. View Interpolation

Table 4 provides a per-scene break down for quantity met-
rics in Mip-NeRF360. These results showcase that our
models consistently improve the baselines.

D.2. View Extrapolation and Scene Completion

Here we present extensive experimental results on masked
3D reconstruction. Figure 2 demonstrate that our perfor-
mance also outperforms baselines in far-field viewpoint ren-
derings. Table 3 and Table 2 provide per-scene quantitative
results.

E. Conclusion
We have observed viewpoint saturation as a fundamental
limitation in previous reconstruction and generation meth-
ods: high-quality reconstruction relies on dense captures,
while generation methods are optimized for weak condi-
tioning. To relax this constraint, we propose GenFusion, an
efficient generative guidance framework that enables accu-
rate 3D reconstruction and content generation for input con-
ditions across varying densities. We achieve this by closing
the loop between reconstruction and generation, creating a
feedback loop where generation becomes aware of the re-
construction status through novel trajectory rendering, and
reconstruction is further regularized using RGB-D videos
generated by our video diffusion model. We evaluate the
interpolation capability using a sparse view reconstruction
setup and the extrapolation capability with a novel masked
reconstruction mechanism. Both tasks demonstrate signifi-
cant improvements over baseline methods. In addition, our
approach achieves scene-level 3D completion, enabling 3D
scene expansion. We hope our findings in bridging recon-
struction and generation can inspire other novel view syn-
theses and 3D scene generation tasks.
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w/ sample view RGB 
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Figure 1. From top to bottom: 2DGS baseline, with train view monocular depth added, with sample view RGB added, with sample view
depth added, and finally with sparsity-aware densification.

3DGS [27] 2DGS [25] FSGS [65] Ours GT
Figure 2. Qualitative comparison of novel view synthesis using masked input on TnT scenes [28].



2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

14eb48a50e 16.44 0.690 0.384 17.40 0.730 0.360 17.64 0.690 0.434 19.92 0.767 0.351
0a1b7c20a9 15.74 0.733 0.278 16.38 0.760 0.263 18.17 0.752 0.310 19.27 0.811 0.230
06da796666 15.42 0.672 0.396 15.34 0.698 0.390 17.02 0.710 0.437 18.54 0.755 0.376
389a460ca1 18.04 0.810 0.309 18.24 0.824 0.311 18.48 0.799 0.367 21.11 0.861 0.273
2cbfe28643 16.09 0.782 0.257 16.79 0.799 0.254 19.50 0.790 0.321 22.03 0.850 0.227
374ffd0c5f 19.85 0.780 0.256 21.16 0.803 0.250 20.98 0.763 0.327 22.35 0.842 0.224
5c3af58102 15.66 0.692 0.273 15.95 0.709 0.260 16.22 0.661 0.325 20.10 0.794 0.214
66fd66cbed 21.42 0.855 0.235 22.15 0.873 0.224 22.29 0.867 0.246 23.27 0.897 0.191
3bb3bb4d3e 16.89 0.795 0.266 17.85 0.810 0.253 18.84 0.780 0.319 22.48 0.883 0.198
91afb9910b 19.18 0.765 0.274 19.91 0.773 0.278 20.86 0.776 0.304 22.76 0.820 0.240
7705a2edd0 16.74 0.698 0.398 16.78 0.712 0.396 18.89 0.715 0.440 21.71 0.792 0.350
71b2dc8a2a 15.67 0.796 0.264 15.94 0.814 0.252 20.42 0.857 0.252 21.64 0.887 0.199
a726c1112a 18.60 0.804 0.321 19.45 0.832 0.295 17.02 0.726 0.423 20.00 0.83 0.297
cbd44beb04 16.46 0.700 0.311 17.40 0.728 0.299 17.35 0.706 0.349 19.38 0.789 0.285
df4f9d9a0a 17.21 0.743 0.358 18.04 0.768 0.344 19.36 0.777 0.356 21.82 0.845 0.268
6d22162561 15.79 0.663 0.398 16.62 0.681 0.401 18.07 0.671 0.441 20.58 0.737 0.372
6d81c5ab0d 13.19 0.540 0.448 14.22 0.601 0.425 14.47 0.573 0.492 16.42 0.634 0.448
ec305787b7 16.75 0.751 0.286 16.98 0.763 0.278 16.78 0.688 0.381 22.122 0.846 0.211
85cd0e9211 18.17 0.758 0.285 18.45 0.767 0.289 18.90 0.688 0.372 22.73 0.814 0.269
95e4b24092 13.97 0.581 0.353 13.66 0.596 0.351 14.99 0.598 0.373 15.99 0.609 0.345
7da3db9905 16.51 0.737 0.309 18.69 0.778 0.285 19.98 0.765 0.314 22.09 0.831 0.231
d3812aad53 15.09 0.607 0.454 16.16 0.654 0.438 16.80 0.662 0.451 17.43 0.684 0.428
b0c4613d6c 15.10 0.612 0.332 15.54 0.623 0.336 17.71 0.637 0.368 19.00 0.668 0.324
b4f53094fd 13.48 0.634 0.306 14.28 0.653 0.299 17.17 0.677 0.311 18.59 0.698 0.271
average 16.56 0.717 0.323 17.22 0.740 0.314 18.25 0.722 0.363 20.47 0.788 0.284

Table 2. Quantitative comparison on DL3DV datasets. Each method is trained on 7000 steps.

2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

barn 16.80 0.675 0.371 17.64 0.685 0.377 18.47 0.677 0.405 17.84 0.672 0.402
ignatius 15.75 0.588 0.329 15.88 0.591 0.359 16.14 0.521 0.458 17.51 0.614 0.363
meetingroom 17.63 0.672 0.364 17.80 0.694 0.356 17.71 0.667 0.421 19.37 0.733 0.348
truck 14.66 0.646 0.357 15.39 0.663 0.361 16.69 0.654 0.407 16.80 0.673 0.383
courthouse 14.80 0.630 0.411 15.15 0.640 0.419 15.80 0.632 0.454 15.68 0.622 0.461
caterpillar 13.79 0.532 0.403 14.33 0.542 0.431 15.35 0.530 0.490 16.58 0.580 0.432
train 13.77 0.561 0.423 14.31 0.587 0.424 14.47 0.528 0.516 15.34 0.580 0.458
average 15.31 0.615 0.380 15.79 0.629 0.390 16.38 0.601 0.450 17.01 0.639 0.406

Table 3. Quantitative comparison on TnT datasets. Each method is trained on 7000 steps with 1/2 frames



2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3 Views
bicycle 12.70 0.124 0.622 14.33 0.300 0.556 14.30 0.234 0.624 15.46 0.275 0.647
bonsai 11.60 0.300 0.568 10.92 0.301 0.736 13.75 0.376 0.524 14.12 0.418 0.534
counter 13.17 0.311 0.539 12.62 0.305 0.597 13.99 0.392 0.527 15.20 0.470 0.520
garden 13.06 0.184 0.575 12.08 0.145 0.649 14.33 0.274 0.586 16.65 0.305 0.580
room 13.79 0.410 0.490 13.04 0.342 0600 14.26 0.483 0.484 16.40 0.570 0.438
stump 14.63 0.171 0.593 14.10 0.196 0.626 15.93 0.276 0.607 17.13 0.317 0.640
kitchen 14.07 0.307 0.542 13.35 0.257 0.621 14.76 0.361 0.538 16.02 0.427 0.542
flowers 10.57 0.104 0.657 10.08 0.129 0.794 12.17 0.177 0.664 12.89 0.210 0.715
treehill 11.95 0.186 0.627 11.22 0.200 0.793 14.10 0.290 0.647 12.89 0.326 0.652
average 13.06 0.318 0.576 13.07 0.243 0.580 14.17 0.318 0.578 15.29 0.367 0.585

6 Views
bicycle 14.35 0.188 0.576 12.92 0.181 0.663 15.76 0.294 0.597 16.52 0.311 0.604
bonsai 14.77 0.471 0.457 13.07 0.373 0.602 16.67 0.546 0.436 16.55 0.557 0.441
counter 15.09 0.428 0.467 13.77 0.352 0.535 16.02 0.495 0.449 16.99 0.545 0.428
garden 16.06 0.308 0.465 14.03 0.201 0.569 17.57 0.401 0.504 18.74 0.406 0.490
room 14.80 0.481 0.446 13.98 0.426 0.564 15.22 0.542 0.443 17.54 0.623 0.410
stump 16.13 0.229 0.556 14.62 0.201 0.609 17.58 0.323 0.582 18.36 0.343 0.585
kitchen 17.12 0.494 0.397 15.11 0.321 0.530 17.64 0.577 0.374 18.54 0.560 0.390
flowers 11.89 0.145 0.607 10.89 0.147 0.757 13.21 0.211 0.649 14.01 0.237 0.658
treehill 13.33 0.240 0.584 12.10 0.222 0.741 15.46 0.347 0.613 15.36 0.363 0.605
average 14.96 0.355 0.505 15.02 0.338 0.506 16.12 0.415 0.517 17.16 0.447 0.500

9 Views
bicycle 15.30 0.237 0.536 13.53 0.213 0.648 17.15 0.343 0.577 17.10 0.332 0.578
bonsai 17.43 0.609 0.373 15.51 0.460 0.482 19.30 0.669 0.356 19.31 0.662 0.354
counter 16.42 0.516 0.406 14.54 0.391 0.493 17.63 0.572 0.391 18.23 0.607 0.379
garden 18.10 0.412 0.397 15.06 0.250 0.522 19.22 0.477 0.455 19.97 0.470 0.446
room 17.36 0.600 0.370 15.49 0.492 0.499 18.16 0.662 0.359 19.75 0.700 0.366
stump 17.45 0.300 0.514 15.69 0.237 0.548 18.72 0.386 0.555 19.40 0.392 0.553
kitchen 19.17 0.611 0.324 16.21 0.393 0.473 20.30 0.682 0.305 20.59 0.640 0.322
flowers 13.01 0.191 0.564 12.01 0.163 0.695 14.33 0.247 0.629 14.95 0.267 0.629
treehill 14.34 0.300 0.555 13.23 0.265 0.733 15.46 0.347 0.613 15.98 0.390 0.595
average 16.79 0.447 0.446 16.67 0.423 0.449 17.94 0.492 0.471 18.36 0.496 0.465

Table 4. Per-scene Quantitative comparison on sparse view reconstruction
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